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Effect of shear flow on the turbidity of a critical colloidal dispersion
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Experiments concerning the effect of shear flow on the turbidity of a colloidal dispersion close to its
gas-liquid critical point are described. Theory predicts that in the mean-field region, the turbidity of the
sheared system relative to that of the quiescent dispersion is a function of a single dimensionless group A
that is proportional to £~ * (7 is the shear rate and £ is the correlation length of the quiescent disper-
sion at the given temperature). Experiments are found to be in accordance with this scaling behavior.
Moreover, the experiments confirm the theoretically predicted A dependence. As a model colloidal sys-
tem, we used spherical silica particles coated with stearyl alcohol. When dissolved in benzene, these col-
loidal particles attract each other, due to the fact that benzene is a marginal solvent for the stearyl coat-
ing. These attractions give rise to a gas-liquid critical point.

PACS number(s): 82.70.Dd, 05.70.Jk, 83.20.Hn

I. INTRODUCTION

Two well separated particles attain a large relative ve-
locity when subjected to shear flow. With increasing dis-
tance (in the gradient direction), a smaller shear rate is
sufficient to sustain a given relative velocity. For these
large separations, diffusion is never fast enough to restore
the shear induced displacements. As a result, extended
structures are severely affected by shear flow, even for
small shear rates. In particular, close to the gas-liquid
critical point, where microstructures exist with linear di-
mensions of the (ultimately diverging) correlation length,
strong influence of weak shear flows is to be expected.
This effect is even enhanced, due to a decrease of the
diffusion coefficient, commonly referred to as critical
slowing down.

The shear rate dependence of the turbidity reflects, in
an integrated form, the effect of shear flow on the long-
ranged microstructure of a suspension. This shear rate
dependence is singular at the critical point. That is, an
infinitesimally small shear rate is then sufficient to induce
a finite effect on the turbidity, due to the infinite extent of
microstructures.

In a recent paper [1] we described the effect of a shear
flow on critical correlations in a colloidal system, on the
basis of the Smoluchowski equation. This is the equation
of motion for the probability density function of the posi-
tion coordinates of the Brownian particles in the sheared
system. The theory is valid in the mean-field region
where the equilibrium structure factor attains the
Ornstein-Zernike form.

The main result is a relatively simple expression for the
structure factor, which is anisotropic and is a highly non-
linear function of the shear rate: this is the Ornstein-
Zernike structure factor for a sheared system. We
showed that both the effects of shear rate and tempera-
ture are described by a single dimensionless group A
which is proportional to Y& * (y is the shear rate and
£7!is the correlation length in the unsheared system).
Caiculations of Onuki and Kawasaki [2] and Oxtoby [3]
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predict a 7£ 3 scaling beyond the mean-field region for
molecular and atomic systems. This kind of scaling im-
plies, as expected, that the effect of a small shear rate is
large in the vicinity of the critical point where the corre-
lation length is large.

An important quantity derived from the shear distort-
ed structure factor is the turbidity. The change in turbi-
dity, due to shear flow, is theoretically predicted to be
proportional to a scaling function T(A). This scaling
function is sharply decreasing with increasing A, showing
that small shear rates have a large effect on the turbidity
near the critical point.

We are not aware of experimental data on the influence
of shear flow on critical colloidal dispersions. Experi-
ments of this kind have been performed for binary fluids,
reported by Beysens and co-workers [4,5]. Their results
indicate the same shear rate dependence as predicted for
colloidal systems (see Ref. [1]).

The aim of this paper is to verify experimentally the
above mentioned scaling for a colloidal dispersion. As a
model system we used colloidal silica particles coated
with a dense organic layer. Dissolved in a poor solvent
for the organic layer, the system exhibits an upper-
critical point. We performed transmission experiments,
at various shear rates and temperatures in the stable re-
gion of the phase diagram in the vicinity of the critical
point.

This paper is organized as follows. In the theoretical
section we summarize the Smoluchowski equation ap-
proach to obtain the shear distorted structure factor, and
from that, the shear rate dependence of the turbidity. We
also discuss how to obtain the temperature dependence of
the correlation length and the Cahn-Hilliard square-
gradient coefficient from the equilibrium structure factor.

The experimental section contains a description of the
colloidal system and the setup used for the measurement
of the small angle critical part of the structure factor and
of the shear rate dependence of the turbidity. In the sub-
sequent section the results are presented and discussed.
We close with a summary and conclusions.
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II. THEORY

A. Effect of a stationary shear flow on microstructure

The influence of a shear flow on the microstructure of a
critical colloidal system can be calculated from the equa-

at

where D, is the Stokes-Einstein diffusion coefficient,
B=1/kyT, kg is Boltzmann’s constant and T the temper-
ature, V is the pair potential, R denotes the separation
between two particles, g is the number density N /¥, and
I" is the velocity gradient tensor, for which we will take
the following form:
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with y the shear rate. This choice corresponds to a flow
in the x direction with its gradient in the y direction.

The three-particle correlation function g; is essential
for the description of long-range correlations: the integral
in Eq. (1) represents the force between two particles
which is mediated via other particles. This indirect force
becomes long ranged as the critical point is approached,
leading to a divergent correlation length £~!. Equation
(1) is closed by an improved superposition approxima-
tion. The asymptotic solution of Eq. (1) for large dis-
tances is obtained by Fourier transformation after lineari-
zation with respect to the total correlation function
h=g—1. The relative structure factor distortion is
found to be equal to

S(K|L)—S°U(K)

Y(K|A)= .
S*(K)—1
-1 +eo 22 w2\ (K2 g2
-iK sz dX(K*—K3+X*)(K}3—X?)
X exp —f—(}{%i—‘,—)— , (3)

where K=k& ! is a dimensionless wave vector with
Cartesian components K ;, S(K |A) is the distorted struc-
ture factor, and S°YK) is the Ornstein-Zernike equilibri-
um structure factor. The function F is equal to

F(K|X)=(X—K,)K?>—K})1+K?—K?2)
+LX3—K3)(1+2K2—2K3)+ L(X°—K3) .
(4)

Note that the solution is only a function of two variables:
K and A. The parameter A describes both the effect of
shear and the distance from the critical point through the
correlation length £7! in the equilibrium system. Large

9 2(R|7)=0=2D, | V2%g(R |7)+BV-g(R|y) VV(R)+p [ dr[V, V()]

tion of motion for the pair-correlation function. This
equation is obtained from the N-particle Smoluchowski
equation by integration over all, except for two position
coordinates [6]. Disregarding hydrodynamic interac-
tions, one obtains the following (stationary) equation of
motion for the pair-correlation function g:

(t,R|7)
&l—k—}—vmeWRL (1)

g(R1y)

values of A result in large relative distortions. Thus the
effect of decreasing the distance from the critical point
(increase of the correlation length) can also be realized by
an increase of the shear rate at a constant distance from
the critical point. The parameter A is defined as follows:

_ Pe’(y)
=__Tetr) | (s)
(ERp)(BZ/RY)

where the Péclet number Pe equals YRZ /2D, and Ry, is
the range of the pair potential. = is a well behaved func-
tion of the density and the temperature and is related to
the Cahn-Hilliard square-gradient coefficient. An impor-
tant feature is the proportionality of A with y£~ % This
implies that, close to the critical point, where the correla-
tion length becomes large, a very small shear rate results
in a relatively large distortion. Furthermore, as A always
occurs as a product with K, there is no distortion in
directions where K| =0.

Equation (3) is the Ornstein-Zernike structure factor
for a sheared system. Its validity is restricted to the
mean-field region, as a result of the linearization of the
equation of motion with respect to the total correlation
function. Nonlinear terms must be included to go
beyond the mean-field region.

In the present paper our special interest is in the shear
rate dependence of the turbidity. Integration of Eq. (3)
yields an expression for the turbidity under shear flow,
relative to the zero shear turbidity,

ry)—ro=—E L1, (©)
(koRy)? (BZ/RE)
where ky,=2m /A, with A; the wavelength of the light in
the solvent. The function T(A) is defined as

_ 27 © K *
T()=["dé [ Ak~ 5 VK gIN) (7a)
with
V*(K,$|A)=W(K =K[cosd,sing,0]|A) . (7b)

K, ¢, and 0 are the spherical coordinates of K, with the
direction of the laser beam chosen along the z axis. The
higher order dependence of K on 6 in Eq. (7) is neglected,
as the structural changes occur at small angles 6. In the
derivation of Egs. (6) and (7) it is assumed that the form
factor of the spherical particles is equal to unity over the
wave-vector range pertaining to the critical microstruc-
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FIG. 1. The turbidity scaling function.

ture. The function T'(A) is calculated from Egs. (3) and
(4) by numerical integration, and is plotted in Fig. 1. The
constant C appearing in Eq. (6) is related to the optical
contrast between the particles and the solvent,

4kl 2
C= P [fyddr[s(r)—ss] : (8)

where V,; is the volume of a colloidal particle and &(r)
and g; are the dielectric constants of the particle and the
solvent, respectively.

Equation (6) is the relation we wish to verify experi-
mentally. Measurements of (y)—7° plotted as a func-
tion of £~ * should all collapse on a single curve. Notice
that identical numerical values of &% may correspond
to different shear rates and temperatures. Moreover,
when the proportionality factors relating 7(y)—7% to
T(A) in Eq. (6), and relating y£™* to A to Eq. (5) are
known, all the data points should coincide with the mas-
ter curve plotted in Fig. 1. To perform this mapping we
must determine the temperature dependence of the corre-
lation length £ ! in the equilibrium system and a value
for 2. The next section is a discussion on how to obtain

20%+2a+1

ra)=a 0 F Lin(14+20)—20E2) 3,243
a a

Sa+3a+2a+2

the correlation length and = from the equilibrium struc-
ture factor.

B. Determination of the correlation length

One way to obtain experimentally the correlation
length in the equilibrium system is by means of light
scattering. The equilibrium structure factor derived from
Eq. (1) has the well known Ornstein-Zernike form,

(B2)'+k?
k*+g
The measured scattered intensity is directly proportional
to S°(k). Our interest is in the critical short wave-vector
contribution to the scattered intensity. To correct for
noncritical contributions to the small wave-vector scat-
tered intensity, resulting from short-ranged interactions,
the noncritical zero-wave-vector contribution to the
structure factor, S31(0), is subtracted from Eq. (9). In an
experiment this is done in approximation, by subtraction
of the high-temperature intensities from the measured
low-temperature intensities, yielding a net intensity. The

reciprocal net intensity is given by

— k2+&
Inet o — 2
(B2) 1—S%(0)E2—[S(0)— 1]k

Se(k)= 9

(10)

For small wave vectors, where (k£)? << 1, the quotient of
the intercept and slope of a plot of the reciprocal net in-
tensity versus k? yields £2. Moreover, from a plot of the
reciprocal slopes versus £2, a value for (82)S4(0) can be
extracted. Estimation of S71(0)=1 then yields an esti-
mate for B2, which quantity is directly proportional to
the Cahn-Hilliard square-gradient coefficient.

A second way to obtain the correlation length is via the
turbidity [7]. The correlation length dependence of the
turbidity is obtained by integration of I (k) over the unit
sphere. The intensity equals CP(k)S®¥(k) with P (k) the
form factor of a sphere,

 sin(ka)—ka cos(ka) 2

(ka)?
=1—L(ka)*+ % (ka)*+0O((ka)®) . (1

350

P(k)=

The Taylor expansion makes it possible to perform the
integration analytically. The result for the turbidity in
terms of a=2(ko& ')? is

202 +2a+1
5

+;T25a4k3[ In(1+2a)—

The experimentally obtained turbidity as a function of
the temperature can be fitted to Eq. (12). The relation be-
tween the correlation length and the temperature is then

parametrized as

2 2
2004241y g (/307202 ]
a a
+O((ak0)6)] . (12)
[
E =6 T—T)7 (13)

where v is the critical exponent, &, ! is a prefactor, and
T, is the critical temperature. Higher order terms in ak,
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are omitted in Eq. (12): for the colloidal system used in
the present study the numerical value of ak, is =~0.4, so
that higher order terms in Eq. (12) are indeed negligible.

III. EXPERIMENT

A. The colloidal system

The colloidal system consists of spherical silica parti-
cles coated with stearyl alcohol [8]. The radius deter-
mined in cyclohexane at low concentration with dynamic
and static light scattering is 391 nm. The size po-
lydispersity is about 12%. The specific volume (g) was
determined from the relative viscosity, 7,, at low mass
concentration. Using Einstein’s law [9], which states that
7n,=1+2.5¢, with ¢ the volume fraction (=gc, and c the
mass concentration), we obtained ¢ =0.69 cm?3/g. This
value was used to calculate volume fractions from known
mass concentrations. Mass concentrations were deter-
mined by drying a known volume of the silica dispersion
for several hours until no change in the mass was record-
ed.

The interaction between the particles depends on the
quality of the solvent. In cyclohexane, which is good sol-
vent for the stearyl alcohol, the spheres behave effectively
as hard spheres. Dissolved in benzene, which is a poor
solvent for the stearyl alcohol coating, an attractive in-
teraction is induced which increases with decreasing tem-
perature. Due to the short length of the stearyl alcohol
chains (about 2 nm) the attractive part of the pair poten-
tial is of short range. The pair interaction potential can
therefore be modeled with a square well potential of
which the depth increases with decreasing temperature
[10]. Above the 0 temperature for stearyl in benzene, the
depth of the square well is zero and the particles behave
as hard spheres. When the temperature is lowered
significantly, the attractive forces induce phase separa-
tion.

The determination of the phase diagram of this col-
loidal system is extensively described in Ref. [11]. Three
different types of phase transition lines are found: the bi-
nodal, spinodal, and the gelline (see Fig. 2). For volume
fractions smaller than 0.19, the gel transition is located

b
critical /
stable / point

19r

16

0 0.1 0.2 0.3 0.4
volume fraction

FIG. 2. Phase diagram of the colloidal dispersion. The
different phases are indicated.

HENK VERDUIN AND JAN K. G. DHONT 52

below the binodal and spinodal. At volume fractions
larger than 0.19, the gelline masks the binodal and spino-
dal. We observed an upper-critical point at a volume
fraction of 0.19. All experiments described here were
performed at this volume fraction. The critical tempera-
ture obtained from cloud point measurements is 17.95°C.

B. Structure factor measurements

The equilibrium structure factor is obtained from small
angle light scattering experiments. For detection we used
a diode camera consisting of 512 diodes with a dynamic
resolution of 10 and an accuracy of 5%
(EG&G/Princeton Applied Research model 1452A). To
improve on the accuracy, the intensities of ten adjacent
diodes were averaged. The camera’s diode chip covered
an angle range from 2.9° to 7.4°. As a light source we
used a He-Ne laser with a wavelength of 632.8 nm. The
experimental ka range is thus 0.029 to 0.075 (k is the
wave vector and a is the particle radius). The camera is
interfaced to a microcomputer for data control.

To suppress effects of multiple scattering, the sample
was sealed in a thin flat 0.2 mm cuvette. The samples
were made dust free by centrifugation for 10 min at a
speed of 2000 rpm. The cuvette was immersed in a ther-
mostated toluene bath with an optical cylindric glass
wall, the temperature of which was measured with a Pt-
100 element. Scattering angle dependent intensities were
measured at 20 different temperatures ranging from 19 °C
to 18°C.

C. Shear rate dependence of the turbidity

Measurements of the shear rate dependence of the tur-
bidity were performed in a shear cell specially designed
for this purpose [12]. The cell consists of two concentric
cylinders made of optical glass. The gap between the
inner and outer cylinder is 1.0 mm. The outer cylinder is
doubly walled for temperature control by water circula-
tion. Two windows are left single for optical use. The
outer cylinder is clamped between two stainless steel
plates at the top and at the bottom. Both plates are hol-
low for temperature control by water circulation. Eva-
poration is diminished by means of a waterlock. The
temperature was measured by a Pt-100 resistance element
which was installed in the bottom plate. A spindle,
fastened on the inner cylinder, was connected to an elec-
tromotor for shear rate control. Shear rates ranged from
0.3 to 1000 s~ .

A He-Ne laser beam (632.8 nm) was directed through
the center of the inner cylinder perpendicular to the flow
and vorticity direction. On both sides of the cell the laser
beam passed a pinhole to ensure that no scattered light at
very small angles is detected. The intensity of the laser
beam was regulated by means of two polarizing filters. A
photocell was used for detection. At each different shear
rate the transmittance for various temperatures was mea-
sured. In the low shear rate regime more data were tak-
en, as large effects are expected for small shear rates close
to the critical point. From the solvent corrected
transmittance data, the turbidity for each shear rate and
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temperature was then calculated from the Lambert-Beer
law.

The temperature dependent zero shear turbidity was
obtained by slowly cooling down the dispersion at a rate
of 0.25°C/h, starting at a temperature of 21°C down to
17°C. We verified that the rate of cooling does not affect
the measured temperature dependence of the turbidity.

IV. RESULTS

A. Equilibrium correlation length

In Fig. 3 the experimental reciprocal net intensities are
plotted as a function of k2, for ten different temperatures.
The solid lines in the figure represent linear fits. A few
temperatures are omitted from this plot for clarity. The
intercept decreases with decreasing temperature, while
the slopes remain more or less unchanged. From Eq. (10)
it follows that these slopes are proportional to
1/[(B=)"1—£%], provided that S%9(0)~1. For large
correlation lengths, that is, small values of £2, the slope is
thus proportional to 82. The temperature independence
of the slope thus implies that the Cahn-Hilliard square-
gradient coefficient is a well behaved function of the tem-
perature. According to Eq. (10), for small k values, the
quotient of the slope and the intercept equals the squared
inverse correlation length, £2. The values for the correla-
tion lengths thus obtained are plotted in Fig. 4 as a func-
tion of the temperature on a double logarithmic scale.
The drawn line is a linear fit according to Eq. (13) with a
critical temperature of 17.95°C. We obtain for the criti-
cal exponent, v=0.522:%0.023, which corresponds to the
expected mean-field value of 1. For the prefactor &; ! we
obtain a value of 19010 nm, which seems quite plausible
in view of the diameter of the particles, which is 78 nm.

In Fig. 5 the reciprocal slopes of Fig. 3 are plotted as a
function of £2. As pointed out in the theoretical section
[see Eq. (10)], we obtain a value for B3 from the quotient
of the slope and the intersection of this curve, provided
that S%4(0)=1. The value for B3, scaled on R, is found
to be equal to 3.60+1.10. The range R of the pair po-

K2 (1072 m™2]

FIG. 3. Reciprocal structure factors plotted as a function of
k% The quotient of the intercept and slope gives &2 The
different temperatures are (from top to bottom): 18.05°C,
18.10°C, 18.14°C, 18.24°C, 18.34°C, 18.45°C, 18.56°C, and
18.66°C.

3.5

30t

log, (&7 [nm))

20

—2.0 -1.5 -1.0 -0.5 0.0

log,(T—T, KD

FIG. 4. Correlation lengths obtained from the reciprocal
structure factor (see Fig. 3). The solid curve corresponds to a
critical exponent of 0.522.

tential is taken equal to the particle diameter. This es-
timated value for BX/RZ is larger than the theoretical
order of magnitude estimate of 0.1. This is not a bad
correspondence, in view of the fact that both the experi-
mental and theoretical values are crude estimates.

A second way to obtain the temperature dependence of
the correlation length is via the turbidity. Figure 6 is a
plot of the turbidity versus the temperature. The drawn
line is a fit according to Eq. (12) in combination with Eq.
(13). Only data points farther away from the critical
point than 0.2°C are taken into account. Multiple
scattering, peaked in forward directions, becomes impor-
tant on approach of the critical point, and probably
causes deviations of the turbidity from the theoretical
curve for T—T, <0.2°C. The critical exponent obtained
from this fit is 0.511+0.27, which is in agreement with
the one obtained via structure factor measurements. This
fit turned out to be very insensitive to the value of the
prefactor of the exponent in Eq. (13).

B. Shear rate dependence of the turbidity

In Fig. 7 the difference of the turbidity in the sheared
and quiescent system is plotted as a function of the shear
rate for several temperatures. Close to the critical point
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FIG. 5. Reciprocal slopes of Fig. 3 as a function of the re-
ciprocal squared correlation length (£?), used for the determina-
tion of BZ /R } (see text).
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FIG. 6. Turbidity as a function of the temperature. The
drawn line is a fit according to Eq. (12) in combination with Eq.
(13).

(T—T,<0.2°C), the equilibrium turbidity must be ob-
tained from extrapolation of the straight line in Fig. 6.
The effect of shear flow is small at higher temperatures
but increases dramatically on approach of the critical
point. In that case only a very small shear rate is needed
to cause a significant decrease of the turbidity.

In Fig. 8 the data of Fig. 7 are scaled on the turbidity
scaling function (7a). To this end, all the turbidity data
are plotted as a function of £~ *. The two proportional
constants which relate 7(y)—7% to T(A) and y£ % to A
[see Egs. (6) and (5)] are chosen in such a way that the
theoretical curve and the data points have the most over-
lap. First of all, this figure shows that the y£~* scaling is
satisfied to within experimental error, since all data
points given in Fig. 8 collapse onto the same curve.
Secondly, the two proportionality constants mentioned
above can be chosen such that all data match with the
theoretical curve. This verifies the predicted functional
dependence of 7(y)—7%% on y£ .

We can go a step further, and compare the two propor-
tionality constants between 7(y)—7°4 and T'(A), and be-
tween £~ % and A, with the theoretical values in Egs. (6)
and (5). For the y£~* axis we used a proportionality con-
stant equal to 5.0X10% sm™* This constant should
equal 1/[2D,(B=/R})R%], with Dy=kyzT /61na,

0 !
£ —1000 i
? —2000 i
K>
K —3000 ‘
|
B \
‘S —4000
=
—5000

O 40 80 120

shear rate [s7']

FIG. 7. The turbidity in the system minus the turbidity in the
equilibrium state plotted as a function of the shear rate. The
different temperatures equal (from top to bottom): 18.41°C,
18.35°C, 18.30°C, 18.25°C, 18.21°C, 18.18°C, 18.10°C,
18.06°C, and 18.01°C.

oe——

FIG. 8. Data of Fig. 7, plotted against y£~*. The propor-
tionality constants for the A axis and T axis are chosen in such a
way that the data points are best mapped on the theoretical tur-
bidity scaling function.

7=0.652X 1073 Pas (viscosity of benzene at a tempera-
ture of 18°C), kzT=4.02X10"2! Nm, ¢=39 nm,
R, =78 nm, and B /R%=3.60. The constant calculated
on the basis of these values is 2.72X 10** sm™*. This in-
dicates that the measured values are too large. Three
reasons may account for this difference. Firstly, the ex-
perimentally obtained value for 8% /R % of 3.60+1.10 is
noting but a crude estimate, since we assumed S2(0)= 1.
Secondly, hydrodynamic interactions are not taken into
account in our theory. Hydrodynamic interactions are
probably accounted for by replacing D, by an “effective
diffusion coefficient,” which may be much smaller than
D,. Thirdly, the improved closure relation that is used to
express the three-particle correlation function g; in Eq.
(1) in terms of the pair-correlation function g is an ap-
proximation. Although this closure relation accounts for
the relevant physical phenomena, it may not be correct
quantitatively, and contribute to the discrepancy between
the measured and the calculated proportionality con-
stant.

The prefactor used for the turbidity axis is 2.10X 1073
m. This value should resemble [(k,R,)*(BZ/R%)]/C.
Using a value of 1.42 for the refractive index of the parti-
cles and 1.50 for the solvent, this factor is 1.81 X103 m,
which is satisfactory in view of the uncertainty in
(BZ/R}).

V. SUMMARY AND CONCLUSIONS

The effect of shear flow on long-ranged microstructure
of a suspension near its gas-liquid critical point is studied
by means of turbidity measurements. The colloidal sys-
tem that we used consists of amorphous silica spheres
coated with stearyl alcohol chains. The solvent is ben-
zene, which is a poor solvent for stearyl alcohol, resulting
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in attractive interactions between the colloidal spheres,
giving rise to an upper-critical gas-liquid critical point.
The shear rate and temperature dependence of the tur-
bidity is found to scale with y£~* (y is the shear rate and
£7! the temperature dependent correlation length of the
quiescent suspension), in accord with the mean-field
theoretical prediction. The correlation length is found to
diverge with the mean-field exponent 1 for
T—T,>0.05°C. The functional dependence of the turbi-
dity on y£* is also verified, although there is some un-
certainty concerning the proportionality constant relat-
ing the turbidity to the theoretical scaling function. This
uncertainty is due to (i) an inaccurate experimental value
for the Cahn-Hilliard square-gradient coefficient, (ii) the
neglect of hydrodynamic interactions in the theory, and

(iii) the fact that the closure relation that is used to ex-
press the three-particle correlation function g, in terms
of the pair-correlation function g is an approximation.
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